Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 92
Filtrar
1.
Sci Rep ; 14(1): 8442, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600110

RESUMO

Using clustering analysis for early vital signs, unique patient phenotypes with distinct pathophysiological signatures and clinical outcomes may be revealed and support early clinical decision-making. Phenotyping using early vital signs has proven challenging, as vital signs are typically sampled sporadically. We proposed a novel, deep temporal interpolation and clustering network to simultaneously extract latent representations from irregularly sampled vital signs and derive phenotypes. Four distinct clusters were identified. Phenotype A (18%) had the greatest prevalence of comorbid disease with increased prevalence of prolonged respiratory insufficiency, acute kidney injury, sepsis, and long-term (3-year) mortality. Phenotypes B (33%) and C (31%) had a diffuse pattern of mild organ dysfunction. Phenotype B's favorable short-term clinical outcomes were tempered by the second highest rate of long-term mortality. Phenotype C had favorable clinical outcomes. Phenotype D (17%) exhibited early and persistent hypotension, high incidence of early surgery, and substantial biomarker incidence of inflammation. Despite early and severe illness, phenotype D had the second lowest long-term mortality. After comparing the sequential organ failure assessment scores, the clustering results did not simply provide a recapitulation of previous acuity assessments. This tool may impact triage decisions and have significant implications for clinical decision-support under time constraints and uncertainty.


Assuntos
Escores de Disfunção Orgânica , Sepse , Humanos , Doença Aguda , Fenótipo , Biomarcadores , Análise por Conglomerados
2.
PLoS One ; 19(4): e0299332, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38652731

RESUMO

Standard race adjustments for estimating glomerular filtration rate (GFR) and reference creatinine can yield a lower acute kidney injury (AKI) and chronic kidney disease (CKD) prevalence among African American patients than non-race adjusted estimates. We developed two race-agnostic computable phenotypes that assess kidney health among 139,152 subjects admitted to the University of Florida Health between 1/2012-8/2019 by removing the race modifier from the estimated GFR and estimated creatinine formula used by the race-adjusted algorithm (race-agnostic algorithm 1) and by utilizing 2021 CKD-EPI refit without race formula (race-agnostic algorithm 2) for calculations of the estimated GFR and estimated creatinine. We compared results using these algorithms to the race-adjusted algorithm in African American patients. Using clinical adjudication, we validated race-agnostic computable phenotypes developed for preadmission CKD and AKI presence on 300 cases. Race adjustment reclassified 2,113 (8%) to no CKD and 7,901 (29%) to a less severe CKD stage compared to race-agnostic algorithm 1 and reclassified 1,208 (5%) to no CKD and 4,606 (18%) to a less severe CKD stage compared to race-agnostic algorithm 2. Of 12,451 AKI encounters based on race-agnostic algorithm 1, race adjustment reclassified 591 to No AKI and 305 to a less severe AKI stage. Of 12,251 AKI encounters based on race-agnostic algorithm 2, race adjustment reclassified 382 to No AKI and 196 (1.6%) to a less severe AKI stage. The phenotyping algorithm based on refit without race formula performed well in identifying patients with CKD and AKI with a sensitivity of 100% (95% confidence interval [CI] 97%-100%) and 99% (95% CI 97%-100%) and a specificity of 88% (95% CI 82%-93%) and 98% (95% CI 93%-100%), respectively. Race-agnostic algorithms identified substantial proportions of additional patients with CKD and AKI compared to race-adjusted algorithm in African American patients. The phenotyping algorithm is promising in identifying patients with kidney disease and improving clinical decision-making.


Assuntos
Injúria Renal Aguda , Algoritmos , Negro ou Afro-Americano , Creatinina , Taxa de Filtração Glomerular , Hospitalização , Fenótipo , Insuficiência Renal Crônica , Humanos , Masculino , Insuficiência Renal Crônica/fisiopatologia , Insuficiência Renal Crônica/epidemiologia , Insuficiência Renal Crônica/diagnóstico , Feminino , Pessoa de Meia-Idade , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/epidemiologia , Adulto , Creatinina/sangue , Idoso , Rim/fisiopatologia
3.
Am J Surg ; 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38383166

RESUMO

BACKGROUND: There is no consensus regarding safe intraoperative blood pressure thresholds that protect against postoperative acute kidney injury (AKI). This review aims to examine the existing literature to delineate safe intraoperative hypotension (IOH) parameters to prevent postoperative AKI. METHODS: PubMed, Cochrane Central, and Web of Science were systematically searched for articles published between 2015 and 2022 relating the effects of IOH on postoperative AKI. RESULTS: Our search yielded 19 articles. IOH risk thresholds ranged from <50 to <75 â€‹mmHg for mean arterial pressure (MAP) and from <70 to <100 â€‹mmHg for systolic blood pressure (SBP). MAP below 65 â€‹mmHg for over 5 â€‹min was the most cited threshold (N â€‹= â€‹13) consistently associated with increased postoperative AKI. Greater magnitude and duration of MAP and SBP below the thresholds were generally associated with a dose-dependent increase in postoperative AKI incidence. CONCLUSIONS: While a consistent definition for IOH remains elusive, the evidence suggests that MAP below 65 â€‹mmHg for over 5 â€‹min is strongly associated with postoperative AKI, with the risk increasing with the magnitude and duration of IOH.

4.
Ann Vasc Surg ; 98: 342-349, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37423327

RESUMO

BACKGROUND: Postoperative acute kidney injury (AKI) is common after major surgery and is associated with increased morbidity, mortality, and cost. Additionally, there are recent studies demonstrating that time to renal recovery may have a substantial impact on clinical outcomes. We hypothesized that patients with delayed renal recovery after major vascular surgery will have increased complications, mortality, and hospital cost. METHODS: A single-center retrospective cohort of patients undergoing nonemergent major vascular surgery between 6/1/2014 and 10/1/2020 was analyzed. Development of postoperative AKI (defined using Kidney Disease Improving Global Outcomes (KDIGO) criteria: >50% or > 0.3 mg/dl absolute increase in serum creatinine relative to reference after surgery and before discharge) was evaluated. Patients were divided into 3 groups: no AKI, rapidly reversed AKI (<48 hours), and persistent AKI (≥48 hours). Multivariable generalized linear models were used to evaluate the association between AKI groups and postoperative complications, 90-day mortality, and hospital cost. RESULTS: A total of 1,881 patients undergoing 1,980 vascular procedures were included. Thirty five percent of patients developed postoperative AKI. Patients with persistent AKI had longer intensive care unit and hospital stays, as well as more mechanical ventilation days. In multivariable logistic regression analysis, persistent AKI was a major predictor of 90-day mortality (odds ratio 4.1, 95% confidence interval 2.4-7.1). Adjusted average cost was higher for patients with any type of AKI. The incremental cost of having any AKI ranged from $3,700 to $9,100, even after adjustment for comorbidities and other postoperative complications. The adjusted average cost for patients stratified by type of AKI was higher among patients with persistent AKI compared to those with no or rapidly reversed AKI. CONCLUSIONS: Persistent AKI after vascular surgery is associated with increased complications, mortality, and cost. Strategies to prevent and aggressively treat AKI, specifically persistent AKI, in the perioperative setting are imperative to optimize care for this population.


Assuntos
Injúria Renal Aguda , Custos Hospitalares , Humanos , Estudos Retrospectivos , Fatores de Risco , Resultado do Tratamento , Complicações Pós-Operatórias , Procedimentos Cirúrgicos Vasculares/efeitos adversos , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/etiologia , Mortalidade Hospitalar
6.
Sci Rep ; 13(1): 17781, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853103

RESUMO

Persistence of acute kidney injury (AKI) or insufficient recovery of renal function was associated with reduced long-term survival and life quality. We quantified AKI trajectories and describe transitions through progression and recovery among hospitalized patients. 245,663 encounters from 128,271 patients admitted to UF Health between 2012 and 2019 were retrospectively categorized according to the worst AKI stage experienced within 24-h periods. Multistate models were fit for describing characteristics influencing transitions towards progressed or regressed AKI, discharge, and death. Effects of age, sex, race, admission comorbidities, and prolonged intensive care unit stay (ICU) on transition rates were examined via Cox proportional hazards models. About 20% of encounters had AKI; where 66% of those with AKI had Stage 1 as their worst AKI severity during hospitalization, 18% had Stage 2, and 16% had Stage 3 AKI (12% with kidney replacement therapy (KRT) and 4% without KRT). At 3 days following Stage 1 AKI, 71.1% (70.5-71.6%) were either resolved to No AKI or discharged, while recovery proportion was 38% (37.4-38.6%) and discharge proportion was 7.1% (6.9-7.3%) following AKI Stage 2. At 14 days following Stage 1 AKI, patients with additional frail conditions stay had lower transition proportion towards No AKI or discharge states. Multistate modeling framework is a facilitating mechanism for understanding AKI clinical course and examining characteristics influencing disease process and transition rates.


Assuntos
Injúria Renal Aguda , Unidades de Terapia Intensiva , Humanos , Estudos Retrospectivos , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/terapia , Terapia de Substituição Renal , Progressão da Doença , Fatores de Risco
8.
JMIR Med Inform ; 11: e48297, 2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37646309

RESUMO

Background: Machine learning-enabled clinical information systems (ML-CISs) have the potential to drive health care delivery and research. The Fast Healthcare Interoperability Resources (FHIR) data standard has been increasingly applied in developing these systems. However, methods for applying FHIR to ML-CISs are variable. Objective: This study evaluates and compares the functionalities, strengths, and weaknesses of existing systems and proposes guidelines for optimizing future work with ML-CISs. Methods: Embase, PubMed, and Web of Science were searched for articles describing machine learning systems that were used for clinical data analytics or decision support in compliance with FHIR standards. Information regarding each system's functionality, data sources, formats, security, performance, resource requirements, scalability, strengths, and limitations was compared across systems. Results: A total of 39 articles describing FHIR-based ML-CISs were divided into the following three categories according to their primary focus: clinical decision support systems (n=18), data management and analytic platforms (n=10), or auxiliary modules and application programming interfaces (n=11). Model strengths included novel use of cloud systems, Bayesian networks, visualization strategies, and techniques for translating unstructured or free-text data to FHIR frameworks. Many intelligent systems lacked electronic health record interoperability and externally validated evidence of clinical efficacy. Conclusions: Shortcomings in current ML-CISs can be addressed by incorporating modular and interoperable data management, analytic platforms, secure interinstitutional data exchange, and application programming interfaces with adequate scalability to support both real-time and prospective clinical applications that use electronic health record platforms with diverse implementations.

9.
Nephron ; 147(12): 725-732, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37607496

RESUMO

BACKGROUND: Drug-associated acute kidney injury (D-AKI) accounts for 19-26% of acute kidney injury (AKI) events in hospitalized patients and results in outcomes similar to patients with AKI from other etiologies. Diagnosing D-AKI is complex and various criteria have been used. SUMMARY: To highlight the variability in D-AKI determination, a review was conducted between January 2017 and December 2022 using PubMed. Search terms included adaptations of "drug associated kidney injury" to identify a sampling of literature discussing definitions and criteria for D-AKI evaluation. The search yielded 291 articles that were uploaded to Rayyan, a software tool used to screen and select studies. Retrospective, observational electronic health record (EHR) studies conducted in hospitalized patients were included. The final sample contained 16 studies for data extraction, representing mostly adult populations (n = 13, 81.3%) in noncritical or unspecified inpatient settings (n = 12, 75%). Nine studies (56.3%) utilized the recommended Kidney Disease: Improving Global Outcome guidelines (KDIGO) criteria to define AKI. Baseline creatinine or laboratory criteria for kidney function were provided in 10 studies (62.5%). Eleven studies (68.8%) established a temporal sequence assessment linking nephrotoxin drug exposure to an AKI event, but these criteria were inconsistent among studies using time frames as soon as 3 months prior to AKI. CONCLUSION: This review highlights the substantial variability in D-AKI criteria in select studies. Minimum expectations about what should be reported and criteria for the elements reported are needed to assure transparency, consistency, and standardization of pharmacovigilance strategies.


Assuntos
Injúria Renal Aguda , Farmacovigilância , Adulto , Humanos , Estudos Retrospectivos , Injúria Renal Aguda/induzido quimicamente , Injúria Renal Aguda/diagnóstico , Rim , Testes de Função Renal , Creatinina
10.
Surg Open Sci ; 14: 17-21, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37409074

RESUMO

Background: Incidental atherosclerotic renal artery stenosis (RAS) is common in patients undergoing vascular surgery and has been shown to be associated with postoperative AKI among patients undergoing major non-vascular surgeries. We hypothesized that patients with RAS undergoing major vascular procedures would have a higher incidence of AKI and postoperative complications than those without RAS. Methods: A single-center retrospective cohort study of 200 patients who underwent elective open aortic or visceral bypass surgery (100 with postoperative AKI; 100 without AKI) were identified. RAS was then evaluated by review of pre-surgery CTAs with readers blinded to AKI status. RAS was defined as ≥50 % stenosis. Univariate and multivariable logistic regression was used to assess association of unilateral and bilateral RAS with postoperative outcomes. Results: 17.4 % (n = 28) of patients had unilateral RAS while 6.2 % (n = 10) of patients had bilateral RAS. Patients with bilateral RAS had similar preadmission creatinine and GFR as compared to unilateral RAS or no RAS. 100 % (n = 10) of patients with bilateral RAS had postoperative AKI compared with 45 % (n = 68) of patients with unilateral or no RAS (p < 0.05). In adjusted logistic regression models, bilateral RAS predicted severe AKI (OR 5.82; CI 1.33, 25.53; p = 0.02), in-hospital mortality (OR 5.71; CI 1.03, 31.53; p = 0.05), 30-day mortality (OR 10.56; CI 2.03, 54.05; p = 0.005) and 90-day mortality (OR 6.88; CI 1.40, 33.87; p = 0.02). Conclusions: Bilateral RAS is associated with increased incidence of AKI as well as in-hospital, 30-day, and 90-day mortality suggesting it is a marker of poor outcomes and should be considered in preoperative risk stratification.

11.
bioRxiv ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37292965

RESUMO

Background: Reference histomorphometric data of healthy human kidneys are largely lacking due to laborious quantitation requirements. Correlating histomorphometric features with clinical parameters through machine learning approaches can provide valuable information about natural population variance. To this end, we leveraged deep learning, computational image analysis, and feature analysis to investigate the relationship of histomorphometry with patient age, sex, and serum creatinine (SCr) in a multinational set of reference kidney tissue sections. Methods: A panoptic segmentation neural network was developed and used to segment viable and sclerotic glomeruli, cortical and medullary interstitia, tubules, and arteries/arterioles in the digitized images of 79 periodic acid-Schiff-stained human nephrectomy sections showing minimal pathologic changes. Simple morphometrics (e.g., area, radius, density) were quantified from the segmented classes. Regression analysis aided in determining the relationship of histomorphometric parameters with age, sex, and SCr. Results: Our deep-learning model achieved high segmentation performance for all test compartments. The size and density of nephrons and arteries/arterioles varied significantly among healthy humans, with potentially large differences between geographically diverse patients. Nephron size was significantly dependent on SCr. Slight, albeit significant, differences in renal vasculature were observed between sexes. Glomerulosclerosis percentage increased, and cortical density of arteries/arterioles decreased, as a function of age. Conclusions: Using deep learning, we automated precise measurements of kidney histomorphometric features. In the reference kidney tissue, several histomorphometric features demonstrated significant correlation to patient demographics and SCr. Deep learning tools can increase the efficiency and rigor of histomorphometric analysis.

12.
Surgery ; 174(3): 709-714, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37316372

RESUMO

BACKGROUND: Acute kidney injury is a common postoperative complication affecting between 10% and 30% of surgical patients. Acute kidney injury is associated with increased resource usage and chronic kidney disease development, with more severe acute kidney injury suggesting more aggressive deterioration in clinical outcomes and mortality. METHODS: We considered 42,906 surgical patients admitted to University of Florida Health (n = 51,806) between 2014 and 2021. Acute kidney injury stages were determined using the Kidney Disease Improving Global Outcomes serum creatinine criteria. We developed a recurrent neural network-based model to continuously predict acute kidney injury risk and state in the following 24 hours and compared it with logistic regression, random forest, and multi-layer perceptron models. We used medications, laboratory and vital measurements, and derived features from past one-year records as inputs. We analyzed the proposed model with integrated gradients for enhanced explainability. RESULTS: Postoperative acute kidney injury at any stage developed in 20% (10,664) of the cohort. The recurrent neural network model was more accurate in predicting nearly all categories of next-day acute kidney injury stages (including the no acute kidney injury group). The area under the receiver operating curve and 95% confidence intervals for recurrent neural network and logistic regression models were for no acute kidney injury (0.98 [0.98-0.98] vs 0.93 [0.93-0.93]), stage 1 (0.95 [0.95-0.95] vs. 0.81 [0.80-0.82]), stage 2/3 (0.99 [0.99-0.99] vs 0.96 [0.96-0.97]), and stage 3 with renal replacement therapy (1.0 [1.0-1.0] vs 1.0 [1.0-1.0]. CONCLUSION: The proposed model demonstrates that temporal processing of patient information can lead to more granular and dynamic modeling of acute kidney injury status and result in more continuous and accurate acute kidney injury prediction. We showcase the integrated gradients framework's utility as a mechanism for enhancing model explainability, potentially facilitating clinical trust for future implementation.


Assuntos
Injúria Renal Aguda , Aprendizado Profundo , Humanos , Injúria Renal Aguda/diagnóstico , Injúria Renal Aguda/epidemiologia , Injúria Renal Aguda/etiologia , Modelos Logísticos , Previsões , Rim
13.
Biomedicines ; 11(6)2023 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-37371807

RESUMO

Acute kidney injury (AKI) is a common postoperative outcome in urology patients undergoing surgery for nephrolithiasis. The objective of this study was to determine the prevalence of postoperative AKI and its degrees of severity, identify risk factors, and understand the resultant outcomes of AKI in patients with nephrolithiasis undergoing percutaneous nephrolithotomy (PCNL). A cohort of patients admitted between 2012 and 2019 to a single tertiary-care institution who had undergone PCNL was retrospectively analyzed. Among 417 (n = 326 patients) encounters, 24.9% (n = 104) had AKI. Approximately one-quarter of AKI patients (n = 18) progressed to Stage 2 or higher AKI. Hypertension, peripheral vascular disease, chronic kidney disease, and chronic anemia were significant risk factors of post-PCNL AKI. Corticosteroids and antifungals were associated with increased odds of AKI. Cardiovascular, neurologic complications, sepsis, and prolonged intensive care unit (ICU) stay percentages were higher in AKI patients. Hospital and ICU length of stay was greater in the AKI group. Provided the limited literature regarding postoperative AKI following PCNL, and the detriment that AKI can have on clinical outcomes, it is important to continue studying this topic to better understand how to optimize patient care to address patient- and procedure-specific risk factors.

14.
ArXiv ; 2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36945689

RESUMO

OBJECTIVES: We aim to quantify longitudinal acute kidney injury (AKI) trajectories and to describe transitions through progressing and recovery states and outcomes among hospitalized patients using multistate models. METHODS: In this large, longitudinal cohort study, 138,449 adult patients admitted to a quaternary care hospital between 2012 and 2019 were staged based on Kidney Disease: Improving Global Outcomes serum creatinine criteria for the first 14 days of their hospital stay. We fit multistate models to estimate probability of being in a certain clinical state at a given time after entering each one of the AKI stages. We investigated the effects of selected variables on transition rates via Cox proportional hazards regression models. RESULTS: Twenty percent of hospitalized encounters (49,325/246,964) had AKI; among patients with AKI, 66% had Stage 1 AKI, 18% had Stage 2 AKI, and 17% had AKI Stage 3 with or without RRT. At seven days following Stage 1 AKI, 69% (95% confidence interval [CI]: 68.8%-70.5%) were either resolved to No AKI or discharged, while smaller proportions of recovery (26.8%, 95% CI: 26.1%-27.5%) and discharge (17.4%, 95% CI: 16.8%-18.0%) were observed following AKI Stage 2. At 14 days following Stage 1 AKI, patients with more frail conditions (Charlson comorbidity index greater than or equal to 3 and had prolonged ICU stay) had lower proportion of transitioning to No AKI or discharge states. DISCUSSION: Multistate analyses showed that the majority of Stage 2 and higher severity AKI patients could not resolve within seven days; therefore, strategies preventing the persistence or progression of AKI would contribute to the patients' life quality. CONCLUSIONS: We demonstrate multistate modeling framework's utility as a mechanism for a better understanding of the clinical course of AKI with the potential to facilitate treatment and resource planning.

15.
ArXiv ; 2023 Mar 09.
Artigo em Inglês | MEDLINE | ID: mdl-36945691

RESUMO

In the United States, more than 5 million patients are admitted annually to ICUs, with ICU mortality of 10%-29% and costs over $82 billion. Acute brain dysfunction status, delirium, is often underdiagnosed or undervalued. This study's objective was to develop automated computable phenotypes for acute brain dysfunction states and describe transitions among brain dysfunction states to illustrate the clinical trajectories of ICU patients. We created two single-center, longitudinal EHR datasets for 48,817 adult patients admitted to an ICU at UFH Gainesville (GNV) and Jacksonville (JAX). We developed algorithms to quantify acute brain dysfunction status including coma, delirium, normal, or death at 12-hour intervals of each ICU admission and to identify acute brain dysfunction phenotypes using continuous acute brain dysfunction status and k-means clustering approach. There were 49,770 admissions for 37,835 patients in UFH GNV dataset and 18,472 admissions for 10,982 patients in UFH JAX dataset. In total, 18% of patients had coma as the worst brain dysfunction status; every 12 hours, around 4%-7% would transit to delirium, 22%-25% would recover, 3%-4% would expire, and 67%-68% would remain in a coma in the ICU. Additionally, 7% of patients had delirium as the worst brain dysfunction status; around 6%-7% would transit to coma, 40%-42% would be no delirium, 1% would expire, and 51%-52% would remain delirium in the ICU. There were three phenotypes: persistent coma/delirium, persistently normal, and transition from coma/delirium to normal almost exclusively in first 48 hours after ICU admission. We developed phenotyping scoring algorithms that determined acute brain dysfunction status every 12 hours while admitted to the ICU. This approach may be useful in developing prognostic and decision-support tools to aid patients and clinicians in decision-making on resource use and escalation of care.

18.
Crit Care Explor ; 5(1): e0848, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36699252

RESUMO

To evaluate the methodologic rigor and predictive performance of models predicting ICU readmission; to understand the characteristics of ideal prediction models; and to elucidate relationships between appropriate triage decisions and patient outcomes. DATA SOURCES: PubMed, Web of Science, Cochrane, and Embase. STUDY SELECTION: Primary literature that reported the development or validation of ICU readmission prediction models within from 2010 to 2021. DATA EXTRACTION: Relevant study information was extracted independently by two authors using the Critical Appraisal and Data Extraction for Systematic Reviews of Prediction Modelling Studies checklist. Bias was evaluated using the Prediction model Risk Of Bias ASsessment Tool. Data sources, modeling methodology, definition of outcomes, performance, and risk of bias were critically evaluated to elucidate relevant relationships. DATA SYNTHESIS: Thirty-three articles describing models were included. Six studies had a high overall risk of bias due to improper inclusion criteria or omission of critical analysis details. Four other studies had an unclear overall risk of bias due to lack of detail describing the analysis. Overall, the most common (50% of studies) source of bias was the filtering of candidate predictors via univariate analysis. The poorest performing models used existing clinical risk or acuity scores such as Acute Physiologic Assessment and Chronic Health Evaluation II, Sequential Organ Failure Assessment, or Stability and Workload Index for Transfer as the sole predictor. The higher-performing ICU readmission prediction models used homogenous patient populations, specifically defined outcomes, and routinely collected predictors that were analyzed over time. CONCLUSIONS: Models predicting ICU readmission can achieve performance advantages by using longitudinal time series modeling, homogenous patient populations, and predictor variables tailored to those populations.

19.
J Am Coll Surg ; 236(2): 279-291, 2023 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-36648256

RESUMO

BACKGROUND: In single-institution studies, overtriaging low-risk postoperative patients to ICUs has been associated with a low value of care; undertriaging high-risk postoperative patients to general wards has been associated with increased mortality and morbidity. This study tested the reproducibility of an automated postoperative triage classification system to generating an actionable, explainable decision support system. STUDY DESIGN: This longitudinal cohort study included adults undergoing inpatient surgery at two university hospitals. Triage classifications were generated by an explainable deep learning model using preoperative and intraoperative electronic health record features. Nearest neighbor algorithms identified risk-matched controls. Primary outcomes were mortality, morbidity, and value of care (inverted risk-adjusted mortality/total direct costs). RESULTS: Among 4,669 ICU admissions, 237 (5.1%) were overtriaged. Compared with 1,021 control ward admissions, overtriaged admissions had similar outcomes but higher costs ($15.9K [interquartile range $9.8K to $22.3K] vs $10.7K [$7.0K to $17.6K], p < 0.001) and lower value of care (0.2 [0.1 to 0.3] vs 1.5 [0.9 to 2.2], p < 0.001). Among 8,594 ward admissions, 1,029 (12.0%) were undertriaged. Compared with 2,498 control ICU admissions, undertriaged admissions had longer hospital length-of-stays (6.4 [3.4 to 12.4] vs 5.4 [2.6 to 10.4] days, p < 0.001); greater incidence of hospital mortality (1.7% vs 0.7%, p = 0.03), cardiac arrest (1.4% vs 0.5%, p = 0.04), and persistent acute kidney injury without renal recovery (5.2% vs 2.8%, p = 0.002); similar costs ($21.8K [$13.3K to $34.9K] vs $21.9K [$13.1K to $36.3K]); and lower value of care (0.8 [0.5 to 1.3] vs 1.2 [0.7 to 2.0], p < 0.001). CONCLUSIONS: Overtriage was associated with low value of care; undertriage was associated with both low value of care and increased mortality and morbidity. The proposed framework for generating automated postoperative triage classifications is reproducible.


Assuntos
Aprendizado Profundo , Adulto , Humanos , Estudos Longitudinais , Reprodutibilidade dos Testes , Triagem , Estudos de Coortes , Estudos Retrospectivos
20.
Sci Rep ; 13(1): 1224, 2023 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-36681755

RESUMO

Accurate prediction of postoperative complications can inform shared decisions regarding prognosis, preoperative risk-reduction, and postoperative resource use. We hypothesized that multi-task deep learning models would outperform conventional machine learning models in predicting postoperative complications, and that integrating high-resolution intraoperative physiological time series would result in more granular and personalized health representations that would improve prognostication compared to preoperative predictions. In a longitudinal cohort study of 56,242 patients undergoing 67,481 inpatient surgical procedures at a university medical center, we compared deep learning models with random forests and XGBoost for predicting nine common postoperative complications using preoperative, intraoperative, and perioperative patient data. Our study indicated several significant results across experimental settings that suggest the utility of deep learning for capturing more precise representations of patient health for augmented surgical decision support. Multi-task learning improved efficiency by reducing computational resources without compromising predictive performance. Integrated gradients interpretability mechanisms identified potentially modifiable risk factors for each complication. Monte Carlo dropout methods provided a quantitative measure of prediction uncertainty that has the potential to enhance clinical trust. Multi-task learning, interpretability mechanisms, and uncertainty metrics demonstrated potential to facilitate effective clinical implementation.


Assuntos
Redes Neurais de Computação , Complicações Pós-Operatórias , Humanos , Estudos Longitudinais , Incerteza , Complicações Pós-Operatórias/etiologia , Aprendizado de Máquina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...